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1 Instructions

Please complete all exercises on this sheet. There are two exercises in the second section and
seven in the third section. Several of the exercises can be rigorously answered by a paragraph
of text. There are no exercises in the last section.

2 Pointed Cofibrations

When we introduced cofibrations the first time we worked exclusively in the unbased category.
In this exercise we shall study the analogues in the pointed category. Past formalising the
definitions and observing a few subtle points there is not much we need to dwell on.

Definition 1 A pointed map j : A→ X is a pointed cofibration if it satisfies the pointed
homotopy extension property with respect to all based spaces. That is, given the solid part of
any strictly commuting diagram in Top∗

A

j

��

� � in0 // A ∧ I+

j∧1

�� F

��

X

f //

in0 // X ∧ I+

F̃
G

G

##G
G

Y.

(2.1)

the dotted extension can be filled in. �
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Recall that X ∧ I+
∼= (X× I)/(∗× I), so the diagram is just a way of enforcing that pointed

homotopies are used throughout. The main results go through in the based category as in the
unbased category. We recall below some of the most salient points. We’ll call a cofibration
as defined in 1 a pointed, or based, cofibration, and sometimes say that it is a cofibration in
Top∗. This is in contrast to the definition given in exercise sheet 2 in the unbased category.
We’ll call the cofibrations defined there unpointed, unbased, or free, and say that they are
cofibrations in Top. In light of Exercise 1 below, we can often get away with being less
pedantic.

We define the pointed mapping cylinder Mj of a pointed map j : A → X by means
of the pushout in Top∗

A

j

�� y

in0 // A ∧ I+

��
X //Mj

Mj =
X ∨ (A ∧ I+)

[j(a) ∼ (a, 0)]
. (2.2)

Then the following is familiar.

Proposition 2.1 A map j : A → X is a pointed cofibration if and only if the pointed
mapping cylinder Mj is a retract of X ∧ I+.

The same proof as in exerise sheet 2 can now be used to show that a pointed cofibration is
necessarily an embedding (it need not be closed).

Example 2.1

1. If i : A ↪→ B and j : B ↪→ C are cofibrations in Top∗, then so is ji : A ↪→ C.

2. If i : A ↪→ X and j : B ↪→ Y are cofibrations in Top∗, then so is i∨j : A∨B ↪→ X∨Y .

3. A pushout in Top∗ of a pointed cofibration is a pointed cofibration. �

The perhaps unexpected point is that it is actually easier for a map to be a pointed cofibra-
tion than for it to be a free cofibration. That is, there are more pointed cofibrations than
unpointed cofibrations.

Exercise 2.1 Assume that j : A → X is a based map. Show that if j is an unpointed
cofibration, then it is a pointed cofibration. (Hint: correctly identify the adjoint form of the
defining diagram (2.1).) �

Exercise 2.2 Give an example of a map which is a cofibration in Top∗ but not in Top.
(Hint: A = ∗.) �

Here are some more simple examples of maps which are pointed cofibrations.

Example 2.2 If X is any pointed space, then the inclusion j : X ↪→ X ∧ I+ is a pointed
cofibration. Notice that

(X ∧ I+) ∧ I+
∼= X ∧ (I+ ∧ I+) ∼= X ∧ (I × I)+ (2.3)
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whilst we can identify

Mj
∼=

(X ∧ I+) ∨ (X ∧ I+)

[(x, 0) ∼ (x, 0)]
∼= X ∧ (I × 0 ∪ 0× I)+. (2.4)

Choosing a retraction r : I × I → I × 0 ∪ 0× I we get a retraction

1 ∧ r : (X ∧ I+) ∧ I+ →Mj. (2.5)

(If you have difficulty visualising this consider first the simple case X = S0). �

Example 2.3 If j : A ↪→ X is a pointed cofibration and K is locally compact, then
j ∧ 1 : A ∧ K ↪→ X ∧ K is a pointed cofibration. This is because the left adjoint func-
tor (−) ∧K preserves pushouts1, so the square

A ∧K
j∧1

�� y

in0 // (A ∧K) ∧ I+

��
X ∧K //Mj ∧K

(2.6)

gives a homeomorphism Mj∧1
∼= Mj ∧K. Thus a retraction X ∧ I+ →Mj for j induces one

X ∧K ∧ I+ →Mj∧1 also for j ∧ 1. �

Example 2.4 If j : A ↪→ X is a pointed cofibration, then so is

Σj : ΣA ↪→ ΣX. (2.7)

This follows directly from example 2.3. �

Example 2.5 If X is any space, then the inclusion

j : X ↪→ CA (2.8)

into its reduced cone is a pointed cofibration. This can be seen similarly to example 2.2, since
there is a homeomorphism Mj

∼= X ∧ I. If X is locally compact, then we can also just appeal
to example 2.3, since J is the map X ∧ S0 ↪→ X ∧ I. �

The examples help illustrate the idea that the theories of pointed and unpointed coifbra-
tions are essentially the same. There are some nasty difficulties that crop up in the pointed
theory, however. Occasionally some of the maps you might want to be pointed cofibra-
tions fail to be so. Other times maps which are pointed cofibrations fail to be unpointed
cofibrations. For instance inclusions such as

X ↪→ X ∨ Y, X ∨ Y ↪→ X × Y (2.9)

will not be unpointed cofibrations unless the basepoints in X, Y have good local properties
(regardless of whether or not they are pointed cofibrations). To save difficulties we often
restrict ourselves to considering spaces with sufficiently nice basepoints.

1See The Category of Pointed Topological Spaces Proposition 1.2 and pg. 8
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Definition 2 A based space X is said to be almost well-pointed, or nearly well-pointed
if ∗ ↪→ X is a cofibration in Top. It is said to be well-pointed if ∗ ↪→ X is a closed
cofibration in Top. �

Nice spaces such as CW complexes and manifolds are well-pointed for any choice of basepoint.
The following important theorem allows us to transfer information between the pointed and
unpointed categories. The proof is quite technical and is due to Strøm [2] pg. 440. A
textbook account can be found in [1] pg. 13.

Theorem 2.2 Let j : A ↪→ X be a pointed inclusion. If both A and X are well-pointed,
then j is a pointed cofibration if and only if it is an unpointed cofibration.

3 Cofiber Sequences

In this section we will work exclusively with based space. Thus all spaces, maps and homo-
topies are pointed, and cofibration means pointed cofibration.

We begin with an auxiliary notion. Let

R
f−→ S

g−→ T (3.1)

be a sequence of pointed sets and pointed functions. We call the sequence exact if

f(R) = g−1(∗). (3.2)

The set g−1(∗) ⊆ S is often called the kernel of g. Note that this is a very weak property
compared to, say, exactness for sequences of groups. Although the maps f, g in (3.1) are
well-behaved around the basepoint, they can have arbitrary behaviour away from it. For
instance, although exactness of

S
g−→ T → 0 (3.3)

implies that g is surjective, exactness of

0→ R
f−→ S (3.4)

does not imply that f is injective2!
We extend exactness to arbitrary long sequences of pointed sets by saying that

. . . Sn+2 → Sn+1 → Sn → Sn−1 → Sn−2 → . . . (3.5)

is exact if each three-term subsequence Sn+1 → Sn → Sn−1 is exact in the sense of (3.1).
Now let j : A ↪→ X be a cofibration. Then A is an embedded subspace of X and we

can form the quotient space X/A. Denote by q : X → X/A the quotient map. We call the
sequence of spaces and maps

A
j−→ X

q−→ X/A (3.6)

a strict cofiber sequence. Although this sequence is exact in the previous sense, it is not
the reason for having introduced it. Rather this cofiber sequence gives us exact sequences.

2Make sure you understand this!
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Exercise 3.1 We keep the notation of the last paragraph. Let Y be any space. Given a
map f : X → Y , show that fj ' ∗ if and only if there is a map g : X → Y such that f ' g
and g(A) = ∗. Conclude that the sequence of pointed sets

[A, Y ]
j∗←− [X, Y ]

q∗←− [X/A, Y ] (3.7)

is exact. Give specific examples to show that j∗ need not be surjective and that q∗ need not
be injective3.�

Recall that if j : A ↪→ X is a cofibration, then so is Σj : ΣA ↪→ ΣX, and moreover
ΣX/ΣA ∼= Σ(X/A), since Σ preserves pushouts in Top∗. Thus applying the suspension
functor Σ to the cofiber sequence 3.6, yields a new cofiber sequence

ΣA
Σj−→ ΣX

Σq−→ ΣX/ΣA. (3.8)

Now, if Y is any space, then according to Exercise 3.1

[ΣA, Y ]
Σj∗←−− [ΣX, Y ]

Σq∗←−− [ΣX/ΣA, Y ] (3.9)

is an exact sequence of pointed sets. On the other hand, each suspension is a grouplike
co-H-space, so in this case we can find more structure in this sequence.

Exercise 3.2 Show that (3.7) is an exact sequence of groups4 and homomorphisms, and
that

[Σ2A, Y ]
Σ2j∗←−− [Σ2X, Y ]

Σ2q∗←−− [Σ2X/Σ2A, Y ] (3.10)

is an exact sequence of abelian groups and homomorphisms. �

We would like next, if possible, to extend the sequence (3.7) to the right, preferably
incorporating some of the extra structure seen in (3.9), (3.10). What’s not quite clear is
exactly how this should be accomplished. If (3.7) is to extend to the right, then maybe so
too should the cofiber sequence (3.6) from which it was derived? But while j is an inclusion,
q : X → X/A is surjective, so there is no way to form another interesting quotient space on
the right of (3.6).

Here’s the trick we’ll use. The cofiber sequence (3.6) actually has more rigidity than we
need. In particular qj = ∗ holds strictly, when really we would only need this equation to
hold up to homotopy.

Definition 3 Let j : A → X be any map. We define the reduced mapping cone Cj of j
by means of the pushout diagram

A

j

�� y

in0 // CA

��
X

ij
// Cj

Cj =
X ∨ CA

[j(a) ∼ [a, 0]]
. (3.11)

We use the notation ij : X → Cj for the canonical inclusion. �

3You may use the (as yet unproven) fact that πnS
n ∼= Z, n ≥ 1.

4Note that I did not say short exact.
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Now the composite ij ◦ j is not identically constant, but rather comes equipped with
a canonical null homotopy. In fact Cj is the universal space with this property, for using
the universal property of the pushout we see that a map Cj → Y is exactly a pair of a
map f : X → Y and a null homotopy F : fj ' ∗. We will return to the mapping cone
construction in future and understand better where it comes from. For now it will suffice to
generate some interesting mathematics for us.

For the next two exercises the reader may use results from Exercise Sheet 2: Cofibrations.
The reader should assume that any result in §2 and §3 of that sheet is also available in the
pointed category, and may quote anything there freely.

Exercise 3.3 Let j : A→ X be an arbitrary map. Show that ij : X ↪→ Cj is a cofibration
and Cj/X ∼= ΣA. �

Thus if j : A→ X is any map at all, then

X
ij−→ Cj

qj−→ ΣA (3.12)

is a cofiber sequence, where qj : Cj → Cj/X ∼= ΣA is the quotient. In particular, if Y is any
space, then

[X, Y ]
i∗j←− [Cj, Y ]

q∗j←− [ΣA, Y ] (3.13)

is an exact sequence of pointed sets.

Exercise 3.4 Now assume that j : A ↪→ X is a cofibration. Return to the square (3.11)
and show that in this case the map CA ↪→ Cj is a cofibration and there is a homeomor-
phism Cj/CA ∼= X/A. Show that the quotient map Cj → Cj/CA ∼= X/A is a homotopy
equivalence. �

Thus under the assumptions of the last exercise there is a strictly commutative diagram

X
ij // Cj

'
��

qj // ΣA

A
j // X

q // X/A

(3.14)

in which the vertical map Cj → Cj/CA ∼= X/A is a homotopy equivalence, and the three
terms in each row each form a cofiber sequence.

Exercise 3.5 Assume that j : A ↪→ X is a cofibration and let Y be a space. Show that
there is an exact sequence of pointed sets

[A, Y ]
j∗←− [X, Y ]

q∗←− [X/A, Y ]
δ∗←− [ΣA, Y ]. (3.15)

The map δ∗ here is induced by a map δ : X/A→ ΣA. What is it? �
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Having come this far we may as well continue. We form the mapping cone Cij of the
map ij : X → Cj

X

ij

�� y

in0 // CX

��
Cj // Cij .

(3.16)

and iterate the construction. The map ij in this square is a cofibration, so everything in
exercises 3.3 and 3.4 is applicable. In particular the quotient map

Cij → Cij/CX
∼= Cj/X ∼= ΣA (3.17)

is a homotopy equivalence, and by identifying Cij/Cj
∼= ΣX we get a cofiber sequence

Cj
iij−→ Cij

qij−→ ΣX. (3.18)

This is related to (3.12) through the diagram

Cj
iij // Cij

'
��

qij // ΣX

X
ij // Cj

'
��

qj // ΣA

=={
{

{
{

{

A
j // X

q // X/A.

δ

<<y
y

y
y

y

(3.19)

Exercise 3.6 Show that the composite ΣA ' Cij
qij−→ ΣX indicated by the unlabeled dotted

arrow is homotopic to the map −Σj. (Hint: to get the sign right you need to think about how
the coordinates of the cone and the suspension get mixed up by the homotopy equivalence.
You can form a geometric picture by thinking of each successive cone as being attaching on
the top of the space. This necessarily changes the orientation of the last attached cone, and
the −1 sign appears as a consequence. Your work in Exercise 2.1 of Co-H-Spaces may be
useful to you in this problem.) �

Next we replace qij up to homotopy by the inclusion of Cij into the mapping cone of
iij . This last space is homotopy equivalent to ΣX/ΣA, and we can check that the map
ΣX → ΣX/ΣA which is supplied by our construction is homotopic to −Σq.

Continuing on we arrive at the long cofiber sequence

A
j // X

q // X/A
δ // ΣA

−Σj // . . . // ΣnA
(−1)nΣnj // ΣnX // . . . (3.20)

Each pair of successive maps in this sequence is null homotopic, and each three term sequence
is pointwise equivalent to a strict cofiber sequence as in (3.14).
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Exercise 3.7 Show that for any space Y there is a long exact sequence

[A, Y ] [X, Y ]
j∗oo [X/A, Y ]

q∗oo [ΣA, Y ]δ∗oo [ΣX, Y ]
−Σj∗oo [Σ(X/A), Y ]

−Σq∗oo . . .oo

. . . [ΣnA, Y ]oo [ΣnX, Y ]
(−1)nΣj∗oo [Σn(X/A), Y ]

(−1)nΣnq∗oo . . .oo

in which the first three terms are exact in the sense of pointed sets, the next three terms
are exact in the sense of groups, and the remaining terms are exact in the sense of abelian
groups. �

4 Applications

There are no exercises in this section. Instead you will find here a collection of examples to
illustrate how the machinery you have developed may be applied.

Example 4.1 Let j : A ↪→ X be a cofibration. Assume that j ' ∗. Then according to
Exercise 3.1 of the Cofibrations sheet, X retracts off of X/A up to homotopy. Now with a
little bit more technology available we can offer an improvement on this statement.

Consider the mapping cone

A

j

�� y

in0 // CA

��
X

ij
// Cj.

(4.1)

The map A ↪→ CA is a cofibration, so according to Exercise 3.2 of Cofibrations the pushout

space Cj is homotopy equivalent to the pushout of X
∗←− A

in0−−→ CA. On the other hand, by

Exercise 3.4 above, there is a homotopy equivalence Cj
'−→ Cj/CA ∼= X/A. In particular

X/A ' X ∨ ΣA. (4.2)

�

Example 4.2 We start with the cofibration 1 = idS0 : S0 =−→ S0 and get from it the long
cofiber sequence

S0 1−→ S0 → ∗ → S1 −1−→ S1 → ∗ . . . (4.3)

Our purpose here is to verify that the signs of Exercise 3.6 are correct.
We check that the mapping cone of 1 is CS0 ∼= D1, and that the inclusion i1 is the

standard map. Then the mapping cone of i1 is S1, but now ii1 : D1 ↪→ S1 is the inclusion of
the bottom cone. i.e. the southern hemisphere. This means that in the diagram

D1
ii1 // S1

'
��

qij // S1

S0 i1 // D1

'
��

qj // S1

>>}
}

}
}

S0 1 // S0 // ∗.
δ

==|
|

|
|

|

(4.4)
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(compare (3.19)) the vertical homotopy equivalence S1 '−→ S1 must interchange the northern
and southern hemispheres. Thus the unlabelled dotted arrow is indeed of degree −1. �

Example 4.3 Suppose X, Y are your favourite well-pointed spaces. Under these assump-
tions on X, Y , the inclusion j : X∨Y ↪→ X×Y is a cofibration, and (X×Y )/(X∨Y ) = X∧Y
by definition. Thus there is a long cofiber sequence

X ∨ Y → X × Y → X ∧ Y δ−→ ΣX ∨ ΣY
Σj−→ Σ(X × Y )→ Σ(X ∧ Y )→ . . . (4.5)

(we don’t need be pedantic about signs here). We claim that Σj has a left homotopy inverse.
Indeed, denote by

X
prX←−− X × Y prY−−→ Y (4.6)

the projections and by

X
iX−→ X ∨ Y iY←− Y (4.7)

the inclusions. Now use the suspension comultiplication to form the map

α = Σ(iXprX) + Σ(iY prY ) : Σ(X × Y )→ ΣX ∨ ΣY. (4.8)

Then

Σj∗α = (Σ(iXprX) + Σ(iY prY )) Σj

' Σ(iXprX) + Σ(iY prY j) (4.9)

' Σ(iXqX) + Σ(iY qY )

' id

where
X

qX←− X ∨ Y qY−→ Y (4.10)

are the pinch maps.
Then a consequence of (4.9) is that the connecting map δ in (4.5) is null homotopic. For

δ ' id ◦ δ ' (αΣj)δ = α(Σjδ) ' α∗ = ∗ (4.11)

since Σj and δ are consecutive maps in a cofiber sequence. Now repeat the analysis of
Example 4.1, replacing Σ(X × Y ) up to homotopy with the mapping cone Cδ. The result is
a homotopy equivalence

Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ). (4.12)

�

Example 4.4 In Exercise Sheet 3: Co-H-Spaces we defined homotopy groups with coeffi-
cients. Recall that the n-dimensional Moore space of degree k is the space P n(k) = Sn−1∪k en
which is the mapping cone of the degree k map k : Sn−1 → Sn−1

Sn−1

k
�� y

// Dn

��
Sn−1 // P n(k)

n ≥ 3, k ≥ 2. (4.13)
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In particular there is a cofiber sequence

. . .→ P n−1(k)→ Sn−1 k−→ Sn−1 → P n(k)→ Sn
k−→ Sn → P n+1(k)→ . . . (4.14)

so given a space X we get a long exact sequence of groups

. . . πn−1X
k←− πn−1X ← πn(X;Zk)← πnX

k←− πnX ← . . . (4.15)

Since we are assuming n ≥ 3, the groups πn−1X and πnX are abelian. If n ≥ 4, then
πn(X;Zk) is abelian too. Note that the induced maps k : πrX → πrX are multiplication by
k.

Now from (4.15) we extract the short exact sequence

0← ker
(
πn−1X

k←− πn−1X
)
← πn(X;Zk)←

πnX

k · πnX
← 0. (4.16)

We identify
πnX

k · πnX
∼= πnX ⊗ Zk (4.17)

and
ker

(
πn−1X

k←− πn−1X
)
∼= TorZ(πn−1X,Zk) (4.18)

and so turn (4.16) into the universal coefficient exact sequence

0→ TorZ(πn−1X,Zk)→ πn(X;Zk)→ πnX ⊗ Zk → 0. (4.19)

�
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